overlap 2 - translation to
DICLIB.COM
AI-based language tools
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:     

Μετάφραση και ανάλυση λέξεων από τεχνητή νοημοσύνη

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

overlap 2 - translation to

Overlap-add Method; Overlap-add; Overlap add; Overlap-add method

two         
  • Two schoolboys in [[Chittagong]], [[Bangladesh]]
NATURAL NUMBER
Number 2; Two-ness; 2 (the number); Two; Secondly; ₂; ٢; ۲; Even prime; Numero dos; 2; Oddest prime; Two (number); Square root of 4; ២; ➋; ➁; ❷; The number 2; 2^1; The 2; 𐡙; ꩒; ༢; TWO; ௨; २; ২; ੨; ૨; ୨; ౨; ೨; ൨; ߂; ໒; ၂; ႒; ꧒; ᥈; 𐒢; ꣒; 2 (glyph); (II); Brace (hunting); 2 (number); 2️⃣; ASCII 50; \x32; U+0032; Smallest known prime number; Draft:Two; 2¹; 2**1; 1B1; 1 B1
dos
two time: traicionar
poner los cuernos
engañar
overlap         
WIKIMEDIA DISAMBIGUATION PAGE
Overlapping; Overlap (disambiguation)
coincidencia
solapar
cubrir
superponer
two         
  • Two schoolboys in [[Chittagong]], [[Bangladesh]]
NATURAL NUMBER
Number 2; Two-ness; 2 (the number); Two; Secondly; ₂; ٢; ۲; Even prime; Numero dos; 2; Oddest prime; Two (number); Square root of 4; ២; ➋; ➁; ❷; The number 2; 2^1; The 2; 𐡙; ꩒; ༢; TWO; ௨; २; ২; ੨; ૨; ୨; ౨; ೨; ൨; ߂; ໒; ၂; ႒; ꧒; ᥈; 𐒢; ꣒; 2 (glyph); (II); Brace (hunting); 2 (number); 2️⃣; ASCII 50; \x32; U+0032; Smallest known prime number; Draft:Two; 2¹; 2**1; 1B1; 1 B1
dos

Ορισμός

acroleína
sust. fem.
Líquido volátil, sofocante que procede de la descomposición de la glicerina y que se emplea para la obtención de distintas materias industriales, especialmente plásticos.

Βικιπαίδεια

Overlap–add method

In signal processing, the overlap–add method is an efficient way to evaluate the discrete convolution of a very long signal x [ n ] {\displaystyle x[n]} with a finite impulse response (FIR) filter h [ n ] {\displaystyle h[n]} :

where h[m] = 0 for m outside the region [1, M]. This article uses common abstract notations, such as y ( t ) = x ( t ) h ( t ) , {\textstyle y(t)=x(t)*h(t),} or y ( t ) = H { x ( t ) } , {\textstyle y(t)={\mathcal {H}}\{x(t)\},} in which it is understood that the functions should be thought of in their totality, rather than at specific instants t {\textstyle t} (see Convolution#Notation).

The concept is to divide the problem into multiple convolutions of h[n] with short segments of x [ n ] {\displaystyle x[n]} :

x k [ n ]     { x [ n + k L ] , n = 1 , 2 , , L 0 , otherwise , {\displaystyle x_{k}[n]\ \triangleq \ {\begin{cases}x[n+kL],&n=1,2,\ldots ,L\\0,&{\text{otherwise}},\end{cases}}}

where L is an arbitrary segment length. Then:

x [ n ] = k x k [ n k L ] , {\displaystyle x[n]=\sum _{k}x_{k}[n-kL],\,}

and y[n] can be written as a sum of short convolutions:

y [ n ] = ( k x k [ n k L ] ) h [ n ] = k ( x k [ n k L ] h [ n ] ) = k y k [ n k L ] , {\displaystyle {\begin{aligned}y[n]=\left(\sum _{k}x_{k}[n-kL]\right)*h[n]&=\sum _{k}\left(x_{k}[n-kL]*h[n]\right)\\&=\sum _{k}y_{k}[n-kL],\end{aligned}}}

where the linear convolution y k [ n ]     x k [ n ] h [ n ] {\displaystyle y_{k}[n]\ \triangleq \ x_{k}[n]*h[n]\,} is zero outside the region [1, L + M − 1]. And for any parameter N L + M 1 , {\displaystyle N\geq L+M-1,\,} it is equivalent to the N-point circular convolution of x k [ n ] {\displaystyle x_{k}[n]\,} with h [ n ] {\displaystyle h[n]\,} in the region [1, N].  The advantage is that the circular convolution can be computed more efficiently than linear convolution, according to the circular convolution theorem:

where:

  • DFTN and IDFTN refer to the Discrete Fourier transform and its inverse, evaluated over N discrete points, and
  • L is customarily chosen such that N = L+M-1 is an integer power-of-2, and the transforms are implemented with the FFT algorithm, for efficiency.